

Problem A
APL Lives!

Problem ID: apl

APL is an array programming language that uses a notation invented by Ken Iverson in 1957. In this problem
we consider only a small subset of the language which we call apl (that is, small APL).

Each apl expression appears on a line by itself and each expression has a value, which is displayed immediately
after the expression is entered. Operators in apl do not have precedence like those in C, C++, or Java, but
instead are applied right to left. However, parentheses may be used to control evaluation order. Similarly,
operands for binary operators are evaluated in right to left order. Here are some examples of apl expressions.

var = 1 2 3 Store the vector 1 2 3 in var, replacing its previous value. The

value of the expression is 1 2 3. The left operand of the =
operator must be a variable.

var + 4 Display the value of var with 4 added to each of its elements
(result: 5 6 7); the stored version of var is not modified.

- / var Display the value of var as if a - operator had been inserted
between each of its elements on each row (result: 2). If var has
two dimensions, the result is a vector. If var has three
dimensions, the result is a two-dimensional array. * / and
+ / have analogous behaviors.

iota 5 Generate a vector with the values 1 2 3 4 5.
2 2 rho 1 2 3 4 Reshape the vector 1 2 3 4 into a 2 by 2 array; 1 and 2 are in

the first row, and 3 and 4 are in the second row.
2 2 rho 1 2 3 4 5 6 Same result as above.
2 3 rho 1 2 3 4 Another reshaping, yielding a first row with 1 2 3 and a second

row with 4 1 2; if the right argument does not have a sufficient
number of elements, then the elements of the right operand are
reused starting from the beginning, in row-major order.

2 drop iota 5 Result: 3 4 5. Drops the two leading elements from iota 5.
1 2 * 3 4 Result: 3 8. Illustrates element-wise multiplication. Operands

must be conformable – either they have the same shape, or at least
one must be a one-element vector (see second example).

((a = 1) drop 1 2 3) – 5 Result: -3 -2. Illustrates use of parentheses.
a + (a = 5) + a + (a = 6) Result: 22. Illustrates evaluation order

In this problem you are to write an interpreter for apl. Integers in the input are non-negative and less than 104.
All computed integer values (including intermediate values) have absolute values less than 104. The number of
entries in any matrix is always less than or equal to 104. Variable names consist of one to three alphabetic lower-
case characters, and the names iota, rho, and drop are always interpreted as operators. Exactly one space
separates elements of statements (constants, variables, operators, and parentheses).

Constants in the input are vectors. All intermediate values are one, two, or three-dimensional arrays with
positive dimensions. This restricts some operand ranges: “2 0 rho 1 2 3”, “2 3 2 1 rho 5”, and
“3 drop iota 3” are illegal. The only arithmetic operators provided are + (addition), – (subtraction), and *
(multiplication). Their operands are conformable as illustrated in the examples. Observe that “1 1 rho 1”
and “1 rho 1” have different shapes. The operand for iota evaluates to a one-element positive vector. The
left operand of drop evaluates to a one-element non-negative vector and its right operand evaluates to a vector.
Both operands of rho evaluate to vectors.

Input
The input contains several test cases, each on a line by itself. The values of variables assigned in one test case
are available for use in following test cases. No expression exceeds 80 characters in length, including space
characters. No test case produces an invalid result (for example, an empty vector).

The last test case is followed by a line containing the single character ‘#’.

Output
For each test case, display a line containing the case number and the input line. Then, starting on the next line,
display the result of evaluating the expression. Vectors display as a single line of integers; m× n arrays display
as m lines of n values, and m× n× p arrays display as m arrays of size n × p, with a blank line separating the
n × p arrays. Values on the same line should be separated by white space but need not be aligned in columns.

Sample Input Output for the Sample Input
var = 1 2 3
var + 4
- / var
iota 5
2 2 rho 1 2 3 4
2 3 rho 1 2 3 4
2 drop iota 4
1 2 * 3 4
((a = 1) drop 1 2 3) – 5
a + (a = 5) + a + (a = 6)
(2 2 rho 2 drop iota 6) + 100
1 2 3 + 4 5 6
2 3 rho 1 2 3 4 5 + 1 2 3 4 5
+ / 2 3 4 rho iota 2 * 3 * 4
(2 4 5 rho iota 2 * 4 * 5) - 99

Case 1: var = 1 2 3
 1 2 3
Case 2: var + 4
 5 6 7
Case 3: - / var
 2
Case 4: iota 5
 1 2 3 4 5
Case 5: 2 2 rho 1 2 3 4
 1 2
 3 4
Case 6: 2 3 rho 1 2 3 4
 1 2 3
 4 1 2
Case 7: 2 drop iota 4
 3 4
Case 8: 1 2 * 3 4
 3 8
Case 9: ((a = 1) drop 1 2 3) - 5
 -3 -2
Case 10: a + (a = 5) + a + (a = 6)
 22
Case 11: (2 2 rho 2 drop iota 6) + 100
 103 104
 105 106
Case 12: 1 2 3 + 4 5 6
 5 7 9
Case 13: 2 3 rho 1 2 3 4 5 + 1 2 3 4 5
 2 4 6
 8 10 2
Case 14: + / 2 3 4 rho iota 2 * 3 * 4
 10 26 42
 58 74 90
Case 15: (2 4 5 rho iota 2 * 4 * 5) - 99
 -98 -97 -96 -95 -94
 -93 -92 -91 -90 -89
 -88 -87 -86 -85 -84
 -83 -82 -81 -80 -79

 -78 -77 -76 -75 -74
 -73 -72 -71 -70 -69
 -68 -67 -66 -65 -64
 -63 -62 -61 -60 -59

 Problem B
Barcodes

Problem ID: barcodes

Code-11 is a barcode system for encoding characters used primarily in labeling telecommunications equipment.
The characters encoded are limited to digits 0 through 9, the dash (“–”), and a special start/stop character which
appears at the beginning and end of each Code-11 barcode.

Code-11 is a discrete system, and each character is encoded independently. A character’s encoding is
represented by five adjacent regions, or bars, that alternate between a dark color and a light color, starting with a
dark bar. The width of each bar is either narrow or wide, according to the encoding scheme shown below, where
0 represents a narrow bar and 1 represents a wide bar.

Character Encoding

0 00001

1 10001

2 01001

3 11000

4 00101

5 10100

6 01100

7 00011

8 10010

9 10000

– 00100

Start/Stop 00110

Thus the character 1 is encoded as a wide dark bar, a narrow light bar, a narrow dark bar, a narrow light bar, and
finally a wide dark bar. The barcodes for the individual characters must be separated by a narrow light bar
whose only function is to separate the characters.

A two-width encoding like that used for Code-11 has the benefit of simplicity. Since it is necessary only to
distinguish a narrow bar from a wide bar, Code-11 allows for a large level of print tolerance in lower-quality
printing conditions.

To enable detection of errors, the Code-11 barcodes we use will have two check characters, C and K, added at
the end of the message (before the stop character). If the n characters to be encoded (left to right) are c1 through
cn, then the weight of the C check character is

൭෍൫ሺ݊ െ ݅ሻ ݉10 ݀݋ ൅ 1൯ ൈ ሺܿ௜ሻݓ
௡

௜ୀଵ

൱ 11 ݀݋݉

where w(ci) is the weight associated with character ci. The weights for the digits 0 through 9 are 0 through 9; the
weight for the hyphen is 10. (Note that mod has higher precedence than +.)

The weight of the K check character is

൭෍൫ሺ݊ െ ݅ ൅ 1ሻ ݉9 ݀݋ ൅ 1൯ ൈ ሺܿ௜ሻݓ
௡ାଵ

௜ୀଵ

൱ 11 ݀݋݉

where cn+1 is the C check character. For example, suppose the message to be encoded is 123–45. Then the C
check character is 5 and the K check character is 2. The barcodes for the eight characters 123–4552, preceded
and followed by the barcode for the start/stop character, comprise the complete Code-11 barcode encoding of
the message.

Simple barcode readers measure the intensity of light reflected from a barcode to a linear array containing
hundreds of tiny CCD sensors, each reporting light or dark. Light and dark regions are identified ,and the width
of each region is used by the decoding software to validate the barcode and to obtain the encoded information.
Since the orientation of the barcode is not fixed, the software must be able to decode the barcode whether it is
scanned from left to right or from right to left.

Your problem is to decode the information obtained by scanning a Code-11 barcode, given the widths of the
light and dark regions detected by the reader. Assume a wide bar is intended to be twice as wide as a narrow bar.
Due to inconsistencies among printers, the width of a bar can be up to 5 percent larger or smaller than intended.
There are no zero-length messages (with barcodes containing only start/stop, check characters, and inter-
character spacing).

Input
The input contains several test cases, each representing a single scanning attempt. The data for each case begins
with an integer m ≤ 150 that specifies the number of regions detected by a barcode reader. This is followed by m
integers d1…dm (1 ≤ di ≤ 200) giving the number of sensors in each region (within a region, all sensors report the
same light intensity). The data for each test case begins and ends with a dark bar (there is no leading or trailing
white space).

The last test case is followed by a single integer zero.

Output
For each input case, display a line containing the case number and the results of the decoding effort. If the
barcode can be successfully decoded, then display the sequence of message characters (without its check
characters). If the decoding is successful but the C check character is incorrect, then display “bad C”. If the
decoding is successful and the C check character is correct but the K check character is incorrect, then display
“bad K”. Display “bad code” if the barcode cannot be successfully decoded due to bar widths outside the
allowable range, missing or invalid start/stop codes, or some other invalid condition. Follow the format of the
sample output.

Sample Input Output for the Sample Input
59
10 20 20 10 10 10 20 10 10 20
10 10 10 10 20 10 20 10 10 10
20 10 20 10 20 10 20 10 10 10
10 10 20 10 10 10 10 10 10 20
20 10 20 10 10 20 10 10 20 10
10 10 20 10 10 20 20 10 10

35
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10

35
10 10 20 20 10 10 20 10 10 10
20 10 10 20 10 10 20 10 10 10
20 10 20 10 20 10 10 10 10 10
10 10 20 20 10

0

Case 1: 123-45
Case 2: bad code
Case 3: bad K

Problem C
Tracking Bio-bots

Problem ID: biobots

The researchers at International Bio-bot Makers (IBM) have invented a new kind of Bio-bot, a robot with
behavior mimicking biological organisms. The development of the new robot is at a primitive stage; they now
resemble simple four-wheeled rovers. And like most modern robots, Bio-bots are not very mobile. Their weak
motors and limited turning capability put considerable limitations on their movement, even in simple, relatively
obstacle-free environments.

Currently the Bio-bots operate in a room which can be described as an m×n grid. A Bio-bot occupies a full
square on this grid. The exit is in the northeast corner, and the room slopes down towards it, which means the
Bio-bots are only capable of moving north or east at any time. Some squares in the room are also occupied by
walls, which completely block the robot. Figure 1, which corresponds to the sample input, shows an example of
such a room.

Figure 1

Clearly, a Bio-bot located on square A is capable of leaving the room, while one at square B is trapped inside it,
no matter what it does. Locations like B are called “stuck squares.” (Walls do not count as stuck squares.) Given
the description of a room, your job is to count the total number of stuck squares in the room.

Input
Input consists of multiple test cases, each describing one room. Each test case begins with a line containing
three integers m, n, and w (1 ≤ m, n ≤ 106, 0 ≤ w ≤ 1000). These indicate that the room contains m rows, n
columns, and w horizontal walls.

Each of the next w lines contains four integers x1, y1, x2, y2, the coordinates of the squares delimiting one wall.
All walls are aligned from west to east, so 0 ≤ x1 ≤ x2 < n and 0 ≤ y1 = y2 < m. Walls do not overlap each other.
The southwest corner of the room has coordinates (0,0) and the northeast corner has coordinates (n -1, m -1).

The last test case is followed by a line containing three zeros.

Output
For each test case, display one line of output containing the test case number followed by the number of stuck
squares in the given room. Follow the format shown in the sample output.

Sample Input Output for the Sample Input
8 8 3
1 6 3 6
2 4 2 4
4 2 7 2
0 0 0

Case 1: 8

Problem D
Castles

Problem ID: castles

Wars have played a significant role in world history. Unlike modern wars, armies in the middle ages were
principally concerned with capturing and holding castles, the private fortified residences of lords and nobles.
The size of the attacking army was an important factor in an army’s ability to capture and hold one of these
architectural masterpieces.

A certain minimum number of soldiers were required to capture a castle. Some soldiers were expected to die
during the attack. After capturing the castle, some soldiers were required to remain in the castle to defend it
against attacks from another enemy. Of course, those numbers were different for different castles. Commanders
of the armies were obliged to consider the number of soldiers required for victory. For example, there are five
castles in the region map shown in Figure 2. The castle at the lower right requires at least 20 soldiers to wage a
winning attack. None are expected to perish during the attack, and 10 soldiers must be left in the castle when the
army moves on.

In this problem you must determine the minimum size of an army needed to capture and hold all the castles in a
particular region. For reasons of security, there is exactly one (bi-directional) route between any pair of castles
in the region. Moving into the neighborhood of an uncaptured castle begins an attack on that castle. Any castle
can serve as the first castle to be attacked, without regard for how the army got there. Once any castle has been
captured, the requisite number of soldiers is left in the castle to defend it, and the remainder of the army moves
on to do battle at another castle, if any remain uncaptured. The army may safely pass through the neighborhood
of a castle that it has already captured. But because of the potential for attacks, the army may traverse the route
between a pair of castles no more than twice (that is, at most once in each direction).

Input
The input contains multiple test cases corresponding to different regions. The description of the castles in each
region occupies several lines. The first line contains an integer n ≤ 100 that is the number of castles in the
region. Each of the next n lines contains three integers a, m, and g (1 ≤ a ≤ 1000, 0 ≤ m ≤ a, 1 ≤ g ≤ 1000), that
give the minimum number of soldiers required to successfully attack and capture a particular castle, the number
of soldiers that are expected to die during the attack, and the number of soldiers that must be left at the castle to
defend it. The castles are numbered 1 to n, and the input lines describing them are given in increasing order of
castle numbers. Each of the remaining n – 1 lines in a test case has two integers that specify the castle numbers
of a pair of castles that are connected by a direct route.

A line containing 0 follows the description of the last region.

Figure 2

Output
For each test case, display the case number and the minimum number of soldiers in the army needed to conquer
all the castles in the region. Follow the format shown in the sample output.

Sample Input Output for the Sample Input
3
5 5 5
10 5 5
5 1 1
1 3
2 3
5
10 5 10
20 10 5
10 10 5
5 5 5
20 0 10
1 2
1 3
1 4
3 5
0

Case 1: 22
Case 2: 65

Problem E
Channel

Problem ID: channel

Joe, a former champion coder, has finally bought the farm. No, no, he’s alive and well; he merely made use of
his vast programming competition winnings to purchase his ancestral farm. He hopes to retire and spend the rest
of his days tending cows (for some reason, he now considers himself an expert on cows).

Sadly, Farmer Joe’s simple bucolic ambitions are not to be. His farm is situated in a cold, northern climate - too
cold for cows! What’s worse, the climate is dry and ill-suited for growing crops. Joe now realizes that he will
have to set up an irrigation scheme for his field. This scheme involves diverting part of a river into a long,
winding channel through his field. Since the crops nearest the channel will thrive, the longer the channel, the
better.

His field is a long rectangular strip of land divided into unit squares. Each square either has dirt, represented by
‘.’, or an immovable rock, represented by ‘#’. The irrigation channel, which is one square wide, enters his land
in the upper left corner and exits it in the lower right. The channel cannot pass through rocks, of course. It is
important that this channel never touches itself, even at a corner (or else the water will seep through and take a
shortcut). Figure 3 and Figure 4 contain examples of the channel touching itself.

C.CCC
C.C.C
CCC.C
...CC
...C.
...CC

C...
CCCC
..CC
..C.
..C.
..CC

Figure 3 Figure 4

Unfortunately, Joe’s best programming days are long behind him. He has a straightforward solution but it turns
out to be far too time consuming. Can you help him figure out the optimal placement of this channel?

Input
Input consists of several test cases. Each test case starts with a line containing r, the number of rows in his field
(2 ൑ r ൑ 20), and c, the number of columns (2 ൑ c ൑ 9). The next r lines each contain a string of length c,
describing his field.

The last test case is followed by a line containing two zeros.

Output
For each test case, display the case number. On the following r lines show how to place the longest possible
channel in the field, subject to the above restrictions. Use the character ‘C’ for the channel. There will always be
a unique solution. Follow the format in the sample output. Print a blank line after the output for each test case.

Sample Input Output for the Sample Input
3 3
.#.
...
.#.
6 7
.......
.......
.......
....#..
.......
.#.....
0 0

Case 1:
C#.
CCC
.#C

Case 2:
CCCCCCC
......C
CCCCCCC
C...#..
CCC.CCC
.#CCC.C

This page intentionally left blank.

Problem F
Contour Mapping
Problem ID: contour

A contour map represents the topography of a given region. Lines on a contour map represent constant
elevations. For example, a contour map might contain a line that represents points with an elevation of 100
meters above mean sea level, another line representing 200 meters elevation, and so on.

The Association for Contour Mapping (ACM) needs a program to produce contour maps from data files
containing elevation measurements collected by a satellite. They are especially interested in the total length of
all contour lines on each map. The elevation data is in the form of sequences of integers that represent elevations
measured at regular intervals along scan lines that run from west to east. The spacing of the scan lines is such
that each elevation measurement in the interior of the data set has six nearest neighbors and is equidistant from
them (when elevation is ignored), as shown in Figure 5 and Figure 6.

Figure 5

Figure 6

The policy of the ACM is to approximate the actual terrain by a set of triangles constructed by connecting each
elevation measurement to its nearest neighbors by straight line segments. Each of these triangles is then treated
as a planar surface, where the plane is determined by the coordinates, including elevation, of the vertices. If the
triangles are projected onto the zero-elevation plane, they form a set of equilateral triangles.

In the figures above, the black numbers represent elevation data and the red dashed lines and numbers represent
contour lines. Figure 5 contains a single contour line at elevation 5. Figure 6 contains multiple contour lines at
elevations 6 and 9. A contour line may pass through the interior of a triangle or run along an edge of a triangle.

Because of the way the data points are interlaced, even-numbered scan lines contain one more data point than
odd-numbered scan lines. In each figure, the first scan line is shown at the top.

Input
The input consists of several test cases, each containing a set of elevation data. Each test case begins with a line
containing four integers as follows:

• s (2 ≤ s ≤ 100) is the number of scan lines of data in the test case.
• p (1 ≤ p ≤ 100) is the number of elevation measurements on the odd numbered scan lines. The even-

numbered scan lines contain p + 1 elevation measurements.
• d (1 ≤ d ≤ 10) is the distance between each elevation measurement and its nearest neighbors when elevation

is ignored (equals the side-length of the equilateral triangles in the figures.)
• h (1 ≤ h ≤ 1000) is the elevation increment between contour lines in the desired map. The final contour map

contains a contour line wherever the elevation is an exact multiple of h. Note that a map may contain
multiple contour lines for a given elevation. Where a region is level, contour lines are shown only for the
boundaries. (See for example the contour line of elevation 9 in Figure 6.)

The first line of each test case is followed by additional lines containing elevation data as a sequence of non-
negative integers no larger than 106. The first p integers represent the elevation measurements on the first scan
line, from left to right. The next p + 1 integers represent the elevation measurements on the second scan line,
reading from left to right. The data continues in order, providing p integers for each odd-numbered scan line and
p + 1 integers for each even-numbered scan line, until all the elevation data has been provided. Each test case
ends with an empty line.

The input is terminated with a line containing a single zero.

Output
For each test case, display its case number followed by the total length of all the contour lines on the contour
map, rounded to the nearest integer. Follow the format of the sample output.

Sample Input Output for the Sample Input
3 2 5 5
1 1
1 9 1
1 1

4 4 5 3
5 7 7 5
5 9 9 9 5
9 9 9 9
7 9 9 9 7

0

Case 1: 15
Case 2: 54

Problem G
The Islands

Problem ID: islands

Wen Chen is the captain of a rescue boat. One of his important tasks is to visit a group of islands once a day to
check if everything is all right. Captain Wen starts
from the west-most island, makes a pass to the
east-most island visiting some of the islands, then
makes a second pass from the east-most island
back to the first one visiting the remaining
islands. In each pass Captain Wen moves steadily
east (in the first pass) or west (in the second pass),
but moves as far north or south as he needs to
reach the islands. The only complication is that
there are two special islands where Wen gets fuel
for his boat, so he must visit them in separate
passes. Figure 7 shows the two special islands in
pink (1 and 3) and one possible path Captain Wen
could take.

Calculate the length of the shortest path to visit all
the islands in two passes when each island’s
location and the identification of the two special islands are given.

Input
The input consists of multiple test cases. The data for each case begins with a line containing 3 integers n
(4 ≤ n ≤ 100), b1, and b2 (0 < b1, b2 < n-1 and b1 ≠ b2), where n is the number of islands (numbered 0 to n-1) and
b1 and b2 are the two special islands. Following this, there are n lines containing the integer x- and y-coordinates
of each island (0 ≤ x, y ≤ 2000), starting with island 0. No two islands have the same x-coordinate and they are
in order from west-most to east-most (that is, minimum x-coordinate to maximum x-coordinate).

Input for the last case is followed by a line containing 3 zeroes.

Output
For each case, display two lines. The first line contains the case number and the length of the shortest tour
Captain Wen can take to visit all the islands, rounded and displayed to the nearest hundredth. The second line
contains a space-separated list of the islands in the order that they should be visited, starting with island 0 and 1,
and ending with island 0. Each test case will have a unique solution. Follow the format in the sample output.

Sample Input Output for the Sample Input
5 1 3
1 3
3 4
4 1
7 5
8 3
5 3 2
0 10
3 14
4 7
7 10
8 12
0 0 0

Case 1: 18.18
0 1 4 3 2 0
Case 2: 24.30
0 1 3 4 2 0

Figure 7

This page intentionally left blank.

Problem H
Rain

Problem ID: rain

In recent years, hurricanes and tsunamis have shown the destructive power of water. That destructive power is
not restricted to the sea, however. Heavy rain may cause floods, destroying people’s houses and fields. Using
intricate models, scientists try to predict where the water will accumulate as a result of significant rain.

One of the ways to model a hilly landscape is triangulation, which approximates a surface using triangles.
Triangle sides are entirely shared between two adjacent triangles, with the exception of triangles at the region
boundary, which may have some sides not shared.

Imagine you have a triangulation model of a landscape. Now the rain starts pouring down – some water flows to
the sea, and the rest gets trapped by the landscape to form lakes. Your task is to write a program that determines
how many lakes are formed and the water level in each of them. Assume that the rain is heavy enough to fill all
lakes up to their maximal levels.

For any lake, it is possible to sail between any two points on its surface (except the boundaries) with a boat
whose size is arbitrarily small, but not zero. Therefore, if two lakes share only points (or one point) having a
zero depth, they are considered different lakes.

Input
The input contains several test cases. Each test case starts with a line containing two integers, p ≥ 3, which is the
number of points, and s ≥ 3, which is the number of sides of the triangulation. Each of the next p lines describes
a triangulation point.

The description of each point starts with a two-letter code that is unique for the test case. The code is followed
by three integers that describe the point in the format x y h. Here x and y (-10000 ≤ x,y ≤ 10000) are two-
dimensional coordinates and h (0 ≤ h ≤ 8848) is the height of the point above sea level.

Each of the next s lines contains the description of one side of a triangle. The description of a side consists of
two different two-letter codes that specify the endpoints of the side. The projection of the lines to the xy-plane
satisfies the following conditions:

• No side intersects any other side except at its endpoints.
• The points and sides together form a triangulation of a single connected region.
• There are no “holes” inside the region (that is, the boundary forms a single closed polygonal curve).

You may consider all points outside the triangulated region to have lower heights than the closest point of the
region boundary. In other words, if the water gets to a boundary of the region, it flows out freely.

The last line of the input contains two zeroes.

Output
For each test case, display the case number and the levels of all different lakes located inside the given region,
each on a separate line. The levels are heights above sea level and should be printed in non-decreasing order. If
no lakes are formed display a single 0. Follow the format of the sample output.

Sample Input Output for the Sample Input
3 3
AA 0 0 0
BB 0 1 0
CC 1 0 0
AA BB
AA CC
BB CC
7 12
aa 1 1 5
bb 1 3 5
xX 0 2 10
XY 0 4 15
XZ 3 4 11
xy 0 0 15
xz 3 0 15
xX XZ
XY XZ
xX XY
xX xy
xX xz
xz xy
aa xX
aa xy
aa xz
bb xX
bb XY
bb XZ
0 0

Case 1:
 0
Case 2:
 10
 10

Problem I
Robots on Ice
Problem ID: robots

Inspired by the ice sculptures in Harbin, the members of the programming team from Arctic University of
Robotics and Automata have decided to hold their own ice festival when they return home from the contest.
They plan to harvest blocks of ice from a nearby lake when it freezes during the winter. To make it easier to
monitor the thickness of the ice, they will lay out a rectangular grid over the surface of the lake and have a light-
weight robot travel from square to square to measure ice thickness at each square in the grid. Three locations in
the grid are specified as “check-in” points and the robot is supposed to radio a progress report from these points
when it is one-fourth, one-half, and three-fourths of the way through its tour of inspection. To avoid unnecessary
wear and tear on the surface of the ice, the robot must begin its tour of the grid from the lower left corner,
designated in (row,column) coordinates as (0,0), visiting every other grid location exactly once and ending its
tour in row 0, column 1. Moreover, if there are multiple tours that the robot can follow, then a different one is to
be used each day. The robot is able to move only one square per time step in one of the four compass directions:
north, south, east, or west.

You are to design a program that determines how many different tours are possible for a given grid size and a
sequence of three check-in points. For example, suppose the lake surface is marked off in a 3 × 6 grid and that
the check-in points, in order of visitation, are (2,1), (2,4), and (0,4). Then the robot must start at (0,0) and end at
(0,1) after visiting all 18 squares. It must visit location (2,1) on step 4 (= ⎣18/4⎦), location (2,4) on step 9
(= ⎣18/2⎦), and location (0,4) on step 13 (= ⎣3×18/4⎦). There are just two ways to do this (see Figure 8). Note
that when the size of the grid is not divisible by 4, truncated division is used to determine the three check-in
times.

Figure 8

Note that some configurations may not permit any valid tours at all. For example, in a 4 × 3 grid with check-in
sequence (2,0), (3,2), and (0,2), there is no tour of the grid that begins at (0,0) and ends at (0,1).

Input
The input contains several test cases. Each test case begins with a line containing two integers m and n, where
2 ≤ m,n ≤ 8, specifying the number of rows and columns, respectively, in the grid. This is followed by a line
containing six integer values r1, c1, r2, c2, and r3, c3, where 0 ≤ ri < m and 0 ≤ ci < n for i = 1, 2, 3.

Following the last test case is a line containing two zeros.

Output
Display the case number, beginning at 1, followed by the number of possible tours that begin at row 0, column
0, end at row 0, column 1, and visit row ri, column ci at time ⎣ i × m × n / 4⎦ for i = 1, 2, 3. Follow the format of
the sample output.

Sample Input Output for the Sample Input
3 6
2 1 2 4 0 4
4 3
2 0 3 2 0 2
0 0

Case 1: 2
Case 2: 0

Chocolate
candy, ava

You find th
are very pi
them. You
a program

Your choco
chocolate,
may then r
single recta
well: you w

For examp
that contain
input.)

Input
The input c
line contain
This is foll
The next li
parts.

The input i

Output
For each te
desired wa

Sample In
4
3 4
6 3 2 1
2
2 3
1 5
0

in its many for
ailable in virtua

hat the only thi
icky and have d
have found it
that solves the

olate comes as
you may break

repeatedly brea
angular portion
will break up y

ple, Figure 9 sh
n 6, 3, 2, and 1

consists of mul
ning a single in
lowed by a line
ine contains n p

is terminated b

est case, first d
ay: display “Ye

nput

S

rms is enjoyed
ally every coun

ing better than
different appet
increasingly di

e problem once

s a rectangular
k one bar into t
ak the resulting
n of the chocol
your bar only if

hows one way t
1 pieces respec

ltiple test cases
nteger n (1 ≤ n
e containing tw
positive intege

by a line contai

isplay its case
es” if it is poss

Prob
Sharing
Problem

by millions of
ntry around the

eating chocola
ites: some wou
ifficult to deter

e and for all!

bar. The bar co
two pieces alon

g pieces in the s
late that has a s
f all of it can be

that a chocolate
tively, by brea

F

s, each describ
 ≤ 15), the num

wo integers x an
ers, giving the n

ning the intege

number. Then
sible, and “No”

blem J
Choco

ID: choco

f people around
e world.

ate is to share i
uld like more a
rmine whether

onsists of same
ng a division b
same manner.
specified numb
e distributed to

e bar consistin
aking it 3 times

Figure 9

ing a chocolate
mber of parts in
nd y (1 ≤ x, y ≤
number of piec

er zero.

display wheth
” otherwise. Fo

Output for
Case 1:
Case 2:

J
late

olate

d the world eve

it with friends.
and others less
r their demands

e-sized rectang
between rows o
Each of your f

ber of pieces. Y
o your friends,

g of 3 × 4 pie
s. (This corresp

e bar to share.
nto which the b
≤ 100), the dim
ces that are sup

her it is possible
ollow the forma

r the Sample
Yes
No

ery day. It is a

 Unfortunately
of the chocola

s can be met. It

gular pieces. To
or columns of t
friends insists o
You are a little
with none left

eces can be spli
ponds to the fir

Each descripti
bar is supposed

mensions of the
pposed to be in

e to break the c
at of the sampl

e Input

truly universal

y, your friends
te that you offe
t is time to writ

o share the
the bar. You
on a getting a
bit insistent as
over.

it into 4 parts
rst sample

ion starts with a
d to be split.
chocolate bar.

n each of the n

chocolate in th
le output.

l

fer
te

s

a

he

This page intentionally left blank.

Problem K
Paperweight

Problem ID: weight

Your company makes artistic paperweights. Each paperweight is the union of two tetrahedra that share one face.
They are clear solid glass with embedded colored flecks. One of the little flecks in each paperweight is actually
a tiny RFID chip. This chip must be placed close to a partnered computer in order for that computer to operate.
Typically this is accomplished by placing the paperweight on top of the computer. The chip has a limited range,
however, so its distance from the flat computer top is significant. Therefore, it is important to calculate the
minimum and maximum possible distances from the chip to the computer top when the paperweight is in a
sufficiently stable position. A position is considered sufficiently stable if the paperweight would not move if the
center of mass were somehow shifted up to 0.2 units in any direction. You may assume the paperweight has
uniform density, and that the chip is small enough to be considered a point.

Figure 10 Figure 11

As an example, consider a paperweight with the vertices of the common face at A = (0, 0, 0), B = (9, 0, 0),
C = (0, 8, 0), the fourth vertex of one tetrahedron at D = (0, 0, 9), the fourth vertex of the other tetrahedron at
E = (1, 1, -8), and the chip at F = (1, 2, -1). (See Figure 10, where the chip is shown as a red dot.) Placing the
paperweight with face BCD on the computer results in the maximum distance of approximately 3.7 (upper part
of Figure 11). Placing the paperweight with face ACD on the computer results in the minimum distance of 1.0
(lower part of Figure 11). Placing the paperweight with face ACE on the computer results in a distance of only
0.9 but is not sufficiently stable.

Input
The input contains one or more test cases. Each test case is a single line describing the six points A, B, C, D, E,
and F, in that order. Each point is in turn described by three integers x, y and z giving its coordinates. Both of the
two tetrahedra have positive volume, D and E lie on opposite sides of the plane defined by the points A, B, C,
and point F lies strictly inside the paperweight. Each coordinate is bounded by 1000 in absolute value. It is
always possible to put the paperweight in at least one sufficiently stable position.

The input is terminated by a line containing only the integer 0.

A

E

B
C

D

x
y

z

F

D
B

E

C

A

F

D

B

E
C

A
F

Output
For each test case, display the case number followed by the minimum and maximum distances from the chip to
the base plane when the paperweight is sufficiently stable. These numbers should be rounded and displayed to
five digits after the decimal point. Follow the format in the sample output.

Sample Input Output for the Sample Input
0 0 0 9 0 0 0 8 0 0 0 9 1 1 -8 1 2 -1
0 0 0 7 0 0 0 7 0 0 0 7 -1 -2 -3 2 2 2
1 2 3 6 2 3 -2 6 3 -1 0 7 4 1 -2 -1 5 3
0

Case 1: 1.00000 3.73526
Case 2: 0.57735 2.66967
Case 3: 0.28214 5.00871

